细胞因子风暴

20203月,我国抗疫几近结束,近两日已无内源性新增确诊患者,但新冠病毒正肆掠全球其他国家,病毒感染导致的重症与细胞因子风暴密切相关。基于此,我们今天谈谈云克隆所能尽到的绵薄之力。

细胞因子风暴(Cytokine Storm)又称细胞因子瀑布级联(Cytokine Cascade、高细胞因子血症 (Hypercytokinemia)细胞因子释放综合征(Cytokine Release SyndromeCRS),机体对病毒、细菌、移植物或其他外界刺激所产生的一种过度免疫应答。一般来说,正常的免疫系统能清除感染,但是当其被过度激活甚至失去控制时,则会反过来伤害机体,细胞因子风暴就是这种伤害性表现的一种极端例子。

细胞因子风暴发生时会导致机体免疫细胞及其所产生的细胞因子形成特定的正反馈机制,使包括干扰素(InterferonIFN)、白介素(InterleukinIL)、肿瘤坏死因子(Tumor necrosis factorTNF)、集落刺激因子(Colony Stimulating FactorCSF)、趋化因子(Chemokine)等在内的多种细胞因子在组织、器官中异常升高,进而迅速导致单器官或多器官损伤、功能衰竭,并最终威胁生命1

细胞因子风暴最早于1993Ferrara等人在移植物抗宿主病graft-versus-host diseaseGVHD中提出2,近年由于其在病毒感染中的多发性,以及CAR-T细胞免疫疗法(Chimeric Antigen Receptor T Cell Immunotherapy)在抗肿瘤治疗中的应用而引起重视,最近则是在2020年初的新冠病毒爆发中再次成为了众人关注的焦点。然而细胞因子风暴在这些不同的生物学过程中所起的作用以及激活的细胞因子是不尽相同的。

首先,多种病原感染会引起细胞因子风暴,这些病原不仅包括病毒,例如:巨细胞病毒(CMV)、天花(Variola)病毒、SARS-CoVSARS-CoV-2MERS-CoV、埃博拉病毒Ebola Virus)、登革热病毒Dengue Fever Virus、流感病毒Influenza Virus)等,也包含细菌,例如土拉弗朗西斯菌、A型链球菌等。据Farrara人对H5N1病毒H3N2H1N1普通流感病毒感染者的对比研究发现H5N1病毒感染患者具有更高水平的IP-10MCP-1MIGIL8IL10IL6IFN3KelvinH1N1病毒感染的研究发现H1N1感染使IP-10MCP-1MIP-1βIL8IL9IL17IL6TNF-αIL15IL12p70显著升高,其中IL15IL12p70IL6是危重症的标志4SARS冠状病毒感染相关研究发现其主要导致IFN-αIFNIL1IL6IL12TGF-β等因子的升高,而MERS病毒感染相关的细胞因子则ILIL6IL8IL2IFN-β56Huang2020SARS-CoV-2的研究发现,重症监护(ICU)患者的血浆中IL2IL7IL10GCSFIP10MCP-1MIP-1αTNF-α水平高于非重症患者7

另外,多种疾病的自然进程也可能会导致细胞因子风暴,例如胰腺炎(Pancreatitis)、嗜血细胞性淋巴组织细胞增生症(Hemophagocytic LymphohistiocytosisHLH)、多发性硬化症(Multiple SclerosisMS)等。Rohit发现在急性胰腺炎引起的CRS中,TNF-αIL1IL10IL6IL8PAF等因子水平显著提高8Ellen等报道,IFN-γTNF-αIL6IL10IL18等因子可作为HLH治疗设计中的靶点9

除感染与疾病外,医源性治疗,例如CAR-T疗法免疫检查点Immunocheckpoint 抑制剂治疗以及器官移植等,也会引起细胞因子风暴。以CAR-T疗法为例Kevin等报道,接受靶向CD19 CAR-T疗法的患者中,CRS的发生率高达7010在完成CAR-T输注后,T细胞过度激活源于靶细胞裂解导致IFNIL6TNF-α等细胞因子的连续释放,这些细胞因子进一步激活免疫细胞(如巨噬细胞单核细胞)和内皮细胞,造成细胞因子的过度级联释放进而导致CRS CAR-T治疗引发的CRS所涉及的细胞因子包括IFNIL2IL6IL8IL1IL10IL12IL15TNF-αMCP-1MIP-1α1112。但是与病毒感染导致的细胞因子风暴不同的是,因为CAR-T治疗产生的CRS与接受治疗的患者体内CAR-T细胞增殖情况是一致的,所以CRS的发生又是患者对CAR-T细胞治疗反应的一个重要的参考指标。目前,通过对大量研究数据进行分析,TNF-αIFN-γIL6IL10等细胞因子已用作CAR-T治疗期间的常规监测11

 

1:不同原因导致的细胞因子风暴涉及的细胞因子比较:

Cause of CRS

CRS Inducers

Cytokines

Infection

H5N1 Influenza Virus

IP-10MCP-1MIGIL8IL10IL6IFN

H1N1 Influenza Virus

IP-10MCP-1MIP-1βIL8IL9IL17IL6TNF-αIL15IL12p70

SARS-CoV

IFN-αIFN-γIL1IL6IL12TGF-β

MERS-CoV

ILIL6IL8IL2IFN-β

SARS-CoV-2

IL2IL7IL10GCSFIP10MCP-1MIP-1αTNF-α


Bacteria ...

...

Diseases

Acute Pancreatitis

TNF-αIL1IL10IL6IL8PAF

HLH

IFN-γTNF-αIL6IL10IL18

Latrogenic Therapy

CAR-T

IFN-γIL2IL6IL8IL1IL10IL12IL15TNF-αMCP-1MIP-1α

...

...


因为细胞因子风暴所导致的严重病理反应,对其进行检测和治疗对疾病的发展和治疗均具有重要意义。目前对CRS进行治疗的主流思路有:1)关键细胞因子的阻断剂,抗IL6受体的单克隆药物托珠单抗已广泛用于CAR-T引起的CRS的治疗中,另外TNF-αIL1等阻滞剂和受体拮抗剂也被证明具有不错的疗效;2)抑制鞘氨醇-1-磷酸盐( Sphingosine-1-PhosphateS1P) 受体信号通路,研究表明通过S1P1激动剂调控内皮细胞上的S1P1表达可以抑制细胞因子和先天免疫细胞募集,进而抑制CRS发生与发展133)免疫抑制剂——糖皮质激素。另外,补体抑制剂,PPAR-γ拮抗剂,激活可溶性配体Slit内皮特异性的Robo4依赖性信号途径等多种方式也在持续研究中。


针对不同疾病和治疗导致的CRS的细胞因子的检测,云克隆可提供全方位的试剂服务科研工作者:

Cytokines

Catalog of CCC Products

Species

IP-10

A371

Human, Rat, Mouse, Dog, Cattle

MCP-1

A087

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Pig, Horse, Simian, Chinese hamster

MIG

B928

Human, Rat, Mouse, Cattle

MIP-1α

A092

Human, Rat, Mouse, Dog, Cattle

MIP-1β

A093

Human, Rat, Mouse, Rabbit, Dog, Cattle, Pig, Gallus, Simian

IL1α

A071

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat

IL1β

A563

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Gallus, Simian, Zebrafish

IL2

A073

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Goat, Gallus, Simian

IL6

A079

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian

IL7

A662

Human, Rat, Mouse, Rabbit

IL8

A080

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian

IL9

A081

Human, Rat, Mouse, Gallus, Simian

IL10

A056

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Goat, Gallus, Simian, Zebrafish

IL12

A111

Human, Mouse, Gallus

IL15

A061

Human, Rat, Mouse, Rabbit, Guinea pig, Cattle, Pig, Goat, Gallus, Zebrafish

IL17

A063

Human, Rat, Mouse, Rabbit, Dog, Cattle, Pig, Horse, Sheep, Gallus

IL18

A064

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Goat, Gallus

IFN-α

A033

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Gallus, Simian

IFN-β

A222

Human, Rat, Mouse, Rabbit, Dog, Cattle, Pig, Horse, Gallus, Simian

IFN-γ

A049

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Gallus, Simian, Zebrafish

TNF-α

A133

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian, Zebrafish

TGF-β1

A124

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian, Zebrafish

GCSF

A042

Human, Rat, Mouse, Pig

PAF

A526

General

 

参考文献

1. Tisoncik, J.R., et al., Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews. 2012. 76(1):16-32.

2. Ferrara JL., et al., Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc, 1993, 25: 1216-7.

3. Jong, M.D., et al., Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med, 2006. 12(10): p. 1203-7.

4. Bermejo-Martin, J.F., et al., Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care, 2009. 13(6): p. R201.

5. Kindler, E., V. Thiel, and F. Weber, Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Adv Virus Res, 2016. 96: p. 219-243.

6. Channappanavar, R. and S. Perlman, Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol, 2017. 39(5): p. 529-539.

7. Huang, C., et al.Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020.

8. Rohit, M., et al., Cytokine storm in acute pancreatitis. Journal of Hepatobiliary Pancreatic Surgery, 2020, 9(4): 401-10.

9. Ellen, B., et al., Hemophagocytic lymphohistiocytosis (HLH): A heterogeneous spectrum of cytokine-driven immune disorders. Cytokine & Growth Factor, 2015. 26(3): p. 263-280.

10. Hay, K.A.. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy. Br J Haematol, 2018. 183(3): p. 364-374.

11. Shimabukuro-Vornhagen A et al. Cytokine release syndrome. J Immunother Cancer. 2018 Jun 5;6(1):56.

12. Hay, K.A., et al., Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood, 2017. 130(21): p. 2295-2306.

13. Teijaro, J.R., et al., Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell, 2011. 146(6): p. 980-91.